Question: Tredence Analytics | NIT Jamshedpur | 8th June 2023
1
Entering edit mode

 

Mystery keys 

 

Mystery keys

John has been given a positive integer number N by Alice. Alice is very much fond of keys and loves to collect them, and now she asks John to find the number of good keys with the given N.
A good key is referred to as a triplet (x, y. 2) which satisfies the following constraints:-


• x,y,z are prime numbers such that 1 <=x < y < z ≤ N.
• x⊕y⊕z= 0 le. the Bitwise Exclusive-OR of x,y.z is equal to 0.


Task


Determine the total number of possible good keys which satisfy the given conditions.


Example


Assumption


• N = 5


Approach


•There are good 0 keys that satisfy the above conditions given N=5
• So the answer to this sample example becomes 0

 

Function description


Complete the good_keys function provided in the editor. This function takes the following parameter and returns an integer thatrepresents the answer to the task as described above in the problem statement:
•M. Represents the integer given in the problem statement


Input format


Note: This is the input format that you must use to provide custom
Input (available above the Compile and Test button).
The first line contains an integer N denoting the function


Output format


Print an integer denoting the number of good keys for the given task


Constraints

3 <= N <= 10^6



T- Missing Elements 


You are given 2 arrays A and B each consisting of N integers.
Task
Print the smallest number which is present in array A but missing
in array B. If no such element exists, print
Example

  • N= 6 
  • A = |1, 2, 4, 6, 5 6]
  •  8 = [2, 5, 8, 5 1Is ,5]

Approach


Number 4 is present in array A but missing in array B
So the output is 4.
Function description
Complete the function solve() which takes 3 parameters and
returns an integer as the required output:
N. Represents an Integer denoting the size of the array
A. Represents an array of V integers
B. Represents an array of N Integers

Input format


Note: This is the input format that you must use to provide custom
input (available above the Compile and Test button).
The first line contains an integer N.
The second line contains an array A of N integers.
The third line contains
an array B of N integers.


Output format


Print the smallest numbers which are present in array A but missing in array B. If no such element exists, print 1.

Sample Input 
8
3 6 7 100 12 22 12 12 
12 3 6 100 40 3 50 7 



Sample Output 

22

 

 

 

 

 

 

 

 

 

ADD COMMENTlink 17 months ago Abhilash Kalyanakrishnan • 300
0
Entering edit mode

MYSTERY KEYS  :  answer will always zero as Bitwise OR  of any 2/3 elements  will always >=1  

 

q2  T_missing elements

 

put second array element in hashmap and  now sort first array and check whether arr1[i]  is present in map or not if not present then return arr1[i]

ADD COMMENTlink 17 months ago Systumm • 200
Entering edit mode
0

what about 2^5^7 = 0 

ADD REPLYlink 17 months ago
Ashutosh Saini
• 30
Entering edit mode
0

we have to perform OR operation not XOR

ADD REPLYlink 17 months ago
Systumm
• 200
Entering edit mode
0

No, the question states we have to perform Bitwise Exclusive OR which means XOR.

ADD REPLYlink 17 months ago
Harshit Mishra
• 10
0
Entering edit mode

For the first problem, Mystery Keys

we will iterate on middle element y and check on its left and right for the possible answers.

#include <bits/stdc++.h>
using namespace std;


int main() {
     
    int n;
    cin>>n;

    vector<bool>prime(n+1,true);
    prime[0]=false;
    prime[1]=false;
    
    for(int i=2;i*i<=n;i++){
        if(prime[i]){
            for(int j=i+i;j<=n;j+=i){
                prime[j]=false;
            }
        }
    }

    int ans=0;
    vector<vector<int>>v;
    for(int j=1;j<=n;j++){
        
        
        int mask=j;
        int req=0;
        int idx=-1;
        for(int i=31;i>=0;i--){
            if(mask & (1<<i)){
                idx=i;
            }
            else{
                if(idx!=-1) req|=(1<<i);
            }
        }
        
        int last=req ^ mask;
        
        if(!prime[req] || !prime[mask] || !prime[last])
        continue;
        
        if(req > mask && last<j){
            ans++;
            v.push_back({last,mask,req});
        }
        else if(req < mask && (last > j && last<=n)){
            ans++;
            v.push_back({req,mask,last});
        }
        
    }   
            
    cout<<"count is "<<ans<<endl;
    
    for(auto it : v){
        cout<<it[0]<<" "<<it[1]<<" "<<it[2]<<endl;
    } 	
     	
     	
	return 0;
}

 

ADD COMMENTlink 17 months ago sober 100
0
Entering edit mode

Question 1:

Since Primes except 2 are always odd, we will not get XOR of 3 primes which are greater than 2 to be zero. So we set x=2.

Now, we can use Sieve to find all primes upto 10**6 and then solve in order to get the value 2^x^y =0.

 

 

Below is the required code:

import math
mx = 10**6
spf = [False,False]+[True for i in range(mx)]
for i in range(2,int(math.sqrt(mx))+1):
    if spf[i]==True:
        for j in range(i*i,mx+1,i):
            spf[j]=False

p=[]

for i in range(len(spf)):
    if spf[i]:
        p.append(i)
p.sort()
n=len(p)

cnt=0
from bisect import bisect_left, bisect_right
N =int(input())

idx=bisect_right(p,N)


# x^y^z=0
# 2^y^z=0
# z= 2^y
a=[]
for i in range(1,idx):
    z= 2^p[i]
    if (2<p[i]<z or 2<z<p[i]) and z<=N:
        cnt+=1
        a.append([2,p[i],z])
print(cnt)
print(a)

 

ADD COMMENTlink 17 months ago Nitish Kumar • 0
Entering edit mode
0

what if we remove the conditions of numbers to be prime.

ADD REPLYlink 17 months ago
sober
100

Login before adding your answer.

Similar Posts
Loading Similar Posts